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The influence of polydispersity on the equilibrium properties of monolayers of three-dimensional dipolar
spheres with short-range repulsive interactions is studied by means of Monte Carlo simulations and a high field
approximation perturbation theory. The particle distribution in the simulations is realized in the semigrand
ensemble by tuning appropriately the underlying particle distribution density. The magnetization curves are
calculated as functions of density and temperature, and the obtained results are compared with the data
determined in a monodisperse equivalent of the system. In-plane and out-of-plane initial magnetic suscepti-
bilities are determined using external fields applied parallel or normal to the monolayer plane. Susceptibility
data for the true two- and three-dimensional counterparts of the system are also calculated for comparison. Our
findings for the magnetic properties can partly be explained by the structural characteristics obtained from the
simulations.
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I. INTRODUCTION

Monolayers of dipolar particles have recently attracted
considerable attention �1–6�. This is partly motivated by the
current technological interest in thin-film devices and by the
need to understand many experimental situations such as ad-
sorption of amphiphilic molecules at an air/water interface,
magnetic microspheres floating on a liquid surface, or thin
ferrofluid films under the influence of external fields. In con-
fined systems the orientational entropy of the system is gen-
erally restricted, and thus new properties without any bulk
analog may emerge. In quasi-two-dimensional �q2D� ferro-
fluids, e.g., an external magnetic field perpendicular to the
surface �or confinement walls� can be used to induce tunable
repulsive interactions between the particles.

Recently, Weis and co-workers �2–4,6� have used simula-
tions and theory to investigate the structures formed in q2D
systems of strongly interacting dipolar spheres in the absence
or in the presence of the external field. Duncan and Camp �5�
examined the dynamics of the self-assembly of dipolar soft
spheres in monolayers. However, the thermodynamic and
magnetization properties of such q2D model systems have
been studied less extensively: besides the work of Lomba
et al. �2�, we are only aware of the work of Gao et al. �7�
who simulated the fluid-fluid equilibria of dipolar Lennard-
Jones �Stockmayer� model systems.

Ferrofluids �magnetic fluids� are stable colloidal disper-
sions of nanometric magnetic particles coated with ionic
groups or polymer surfactants in liquid carriers, which have
a wide range of technological applications �8�. The constitu-
ent nanoparticles are roughly spherical and their permanent
magnetic dipole moments are proportional to their volumes.
Therefore the key interaction in ferrofluids is the long-range
dipole-dipole potential besides the obvious spherical repul-
sion between the magnetic cores, and the short-range inter-
actions due to the coatings �van der Waals attractions and
electrostatic or steric repulsions� are less important �9�.

The characteristic feature of real ferrofluids is that the
nanoparticles differ in size and magnetic moment. This poly-
dispersity affects the equation of state of the system and may
have an important consequence for the phase behavior, in
particular for the fluid-fluid coexistence �10,11�. Polydisper-
sity also affects the equilibrium magnetization of these flu-
ids: recently, the influence of realistic polydispersity on the
equilibrium magnetization properties of model ferrofluids
was investigated, and it was found that the magnetization is
greater in the polydisperse system than in its monodisperse
equivalent �12�.

Simulations of polydisperse systems are generally per-
formed with a discretization of the particle distribution
�12,13�, reducing the number of components to a small value
and thus bringing about some errors, due to finite-size ef-
fects, in the results of the calculations. Utilizing the semi-
grand ensemble Monte Carlo approach �14,15� that incorpo-
rates resizing moves of the particles, quasicontinuous
particle distributions can be realized. Although this technique
was originally restricted to systems with variable polydisper-
sity, i.e., to systems where the form of the particle distribu-
tion also depends on the thermodynamic conditions �16�, it is
possible to determine the form of the underlying �sampling�
distribution for the resizing moves during the simulation, for
which the ensemble averaged particle distribution fits the
particle distribution to be generated in the system �17�. There
are also related approaches �18–20� based on Monte Carlo
simulations in the grand canonical ensemble, the latter �20�
involves employing a self-consistent iterative determination
of the chemical potential distribution �conjugate to the com-
position distribution�. This is a more sophisticated technique;
nevertheless, it has a drawback in view of the present study
since the overall number density of the system cannot be
kept fixed.

In this paper, we study the influence of polydispersity on
the magnetic properties of model ferrofluid monolayers by
means of simulation and theory. In the simulations, the pre-
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scribed particle distribution is realized as a quasicontinuous
particle distribution. Magnetization curves and initial suscep-
tibilities are calculated and the microstructures are analyzed
as functions of density and temperature, and the obtained
results are compared with the data determined in the mono-
disperse and in the true two- and three-dimensional �2D and
3D� counterparts of the systems. Since there is a sizable body
of thermodynamic perturbation theoretical research avail-
able, which is devoted to the study of bulk properties of
magnetic �9,10,21,22� or the corresponding dipolar molecu-
lar fluids �23–25�, here we use again, continuing our pertur-
bation theoretical study �12�, a first order cluster expansion
theory to predict the magnetization curves in q2D and initial
susceptibilities in all studied dimensions.

II. METHOD

A. Model

The system consists of spherical particles of diameter �i,
which have permanent point dipole �magnetic� moments mi.
The short-range repulsive interaction between particles i and
j are modeled by a shifted and truncated Lennard-Jones pair
potential �26�:

�ij,r
�D� = 4����ij

rij
�12

− ��ij

rij
�6

− ��ij

rc
�12

+ ��ij

rc
�6� ,

rij � rc = �ij2
1/6, �1�

where � is the energy parameter, rij is the interparticle dis-
tance, �ij = ��i+� j� /2, and rc is the cutoff radius �D
=3D,q2D,2D�. This form of nearly hard sphere repulsion
takes into account the fact that the particle size in ferrofluids
exceeds the magnetic core diameter �i.

The three-dimensional dipole-dipole potential between
particles i and j is given by

�ij,d
�D� =

mi · m j

rij
3 − 3

�mi · rij��m j · rij�
rij

5 , D = 3D,q2D. �2�

In the q2D case the spheres and the centers of the dipole
moments are constrained to lie on the same plane while the
dipole vectors can freely rotate in 3D. Here, the dipole-
dipole pair potentials are quoted in Gaussian units to facili-
tate the comparison of the 2D and 3D results.

In true 2D the dipole vectors allow one to rotate only in
the plane of the dipole centers and the dipole-dipole potential
can be written as

�ij,d
�2D� =

mi · m j

rij
2 − 2

�mi · rij��m j · rij�
rij

4 . �3�

This interaction potential is derived on the basis of the two-
dimensional Laplace equation via the application of the mul-
tipole potential expansion �27�. It is long ranged in 2D as
well as Eq. �2� in 3D. It is easy to see that the orientation part
of Eq. �3� can be expressed by a single cosine function of the
orientation of dipole vectors and the interparticle radius vec-
tor �27� and therefore its mathematical shape makes easier
the analytical calculations in 2D.

The interaction of dipole moments with an external mag-
netic field H in all dimensions is

�i
ext = − mi · H . �4�

The particle polydispersity is described by the gamma dis-
tribution �28�,

p�x� =
x�

x0
� x

x0
�aexp�− x/x0�

��a + 1�
, �5�

where x is the magnetic core diameter of particles, x0 and a
are the parameters of the distribution, � denotes the gamma
function, and x�=1 nm is taken as the unit length �to render
p�x� dimensionless�. For spherical particles, �=x, and the
magnetic moment reads

m�x� = Md
�

6
x3, �6�

where Md represents the bulk magnetization of the ferromag-
netic component.

B. Theory

Our calculation is based on the high field perturbation
approximation originally introduced by Buyevich and Ivanov
�21�. In the framework of this theory we assume that the
orientation of magnetic dipoles is governed mainly by the
external field and the dipole-dipole interaction can be con-
sidered as a perturbation. According to this assumption the
total pair potential of the D dimensional reference system is

�0
�D� = 	

i�j

�ij,r
�D� + 	

i

�i
ext, D = 3D,q2D,2D. �7�

Therefore the pair correlation function of the reference sys-
tem reads

gij,0
�D��r12,	1,	2� = f i

�D��	1�gij,r
�D��r12�f j

�D��	2� ,

D = 3D,q2D,2D. �8�

In this paper, the mean-field approximation is used for the
pair correlation functions of the shifted and truncated
Lennard-Jones fluids:

gij,r
�D��r12� = 
1, if r12 
 �ij

0, if r12 � �ij
�, D = 3D,q2D,2D. �9�

The single particle orientation distribution function for the
different dimensions is

f i
�D��	1� = exp��i cos �i�
�i sinh−1��i� , if D = 3D,q2D

�I0��i��−1, if D = 2D
� ,

�10�

where �i=miH /kT with k and T being the Boltzmann con-
stant and the temperature, �i is the angle between the ith
dipole and the external field, and I0��� is the modified Bessel
function of the first kind of zero order. The corresponding
configurational integral of the reference system can be writ-
ten as
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Q0
�D� = Qr

�D��
i

��i�−1 sinh��i� , if D = 3D,q2D


i

I0��i� , if D = 2D. �
�11�

In our approximation, the knowledge of the configurational
integral Qr

�D� is not necessary to the calculation of the mag-
netic properties; therefore we do not specify the correspond-
ing formula. The long-ranged dipole-dipole interaction in
Eqs. �2� and �3� is considered as a perturbation and, on the
basis of an expansion of the total configurational integral
�Q�D�� with respect to the Mayer function, we obtain:

ln
Q�D�

Q0
�D� �

1

2V
	
i,j

NiNj� d�D�r1d�D�r2d�D�	1d�D�	2

 f i
�D��	1�fM,ij

�D� �r12,	1,	2�f j
�D��	2� ,

D = 3D,q2D,2D, �12�

where V is the volume �area� of the system, fM,ij
�D� represents

the Mayer function, and Ni denotes the number of dipoles
bearing dipole moment mi. Furthermore, d�3D�r1=d3r1,
d�q2D�r1=d�2D�r1=d2r1, d�3D�	1=d�q2D�	1= �4��−1 sin �1

d�1d�1, and d�2D�	1= �2��−1d�1d�1, where 	1 is the three-
or two-dimensional solid angle. Here the Mayer function is
defined in the usual way:

fM,ij
�D� �r12,	1,	2� = exp�−

�ij,d
�D��r12,	1,	2�

kT
� − 1,

D = 3D,q2D,2D. �13�

To perform the integration in Eq. �12�, a further approxima-
tion is necessary: in 2D and q2D, we expand the Mayer
function into first order Taylor series, however, in order to
improve the approximation for the susceptibility for real 3D
systems �see Ref. �12��, a third order Taylor series expansion
is used in Eq. �13�. In q2D, in contrast to 3D and 2D, besides
the in-plane external field �H�� we can introduce an external
field which is perpendicular to the surface �H��. Naturally,
the configurational integral �Eq. �12�� depends on this
choice. The integration with respect to 	1 and 	2 can be
performed analytically in all dimensions. In 3D and q2D the
remaining integration with respect to r1 and r2 can also be
carried out analytically on an infinitely long cylinder and an
infinitely long rectangle to avoid the depolarization. As the
two integrals appearing in q2D are not long-ranged, they can
be calculated on 2D “spheres.”

From the configurational integral the field dependent free
energy can be obtained. According to the two external field
orientations the q2D free energies are

F�
�q2D� = Fr

�q2D� − kT	
i

Ni ln
sinh��i�

�i

−
�

2V
	
i,j

NiNjmimjL��i�L�� j� , �14�

and

F�
�q2D� = Fr

�q2D� − kT	
i

Ni ln
sinh��i�

�i

+
�

V
	
i,j

NiNjmimjL��i�L�� j� , �15�

where L���=coth���−1/� is the Langevin function. In this
paper, we do not study the magnetization for 3D and true 2D
systems therefore we present the corresponding free energies
only with such kind of terms which contribute to the initial
susceptibility. �The 3D and true 2D free energy functions are
rather complicated and will be published in our future work
�29�.� The initial susceptibility is proportional to the second
derivative of the field dependent free energy with respect to
the field strength; in the following we give their power ex-
pansions in second order:

F�2D� = Fr
�2D� −

kT

4 	
i

Ni�i
2 −

�

8V
	
i,j

NiNjmimj�i� j + O�H3� ,

�16�

and

F�3D� = Fr
�3D� −

kT

6 	
i

Ni�i
2 −

2�

27V
	
i,j

NiNjmimj�i� j

−
2�

675V�kT�2	
i,j

NiNjmi
3mj

3�i� j�ij
−6 + O�H3� .

�17�

Assuming continuous polydispersity in dipole moment,
the free energies can be expressed with the help of integrals
containing the particle distribution functions �Eq. �5��. The
derived q2D magnetization functions that are proportional to
the field derivatives of the corresponding free energies are

M�
�q2D� = �L����1 +

�

2
�L����� , �18�

and

M�
�q2D� = �L����1 − ��L����� , �19�

where

L��� = �
0

�

m�x�p�x�L���x��dx �20�

and
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L���� = �
0

�

m�x�p�x�L����x��dx . �21�

In these equations L���� is the field derivative of the Lange-
vin function.

Equations �18� and �19� lead to the following susceptibili-
ties:

��
�q2D� = 4��L

�q2D��1 +
11�

6
�L

�q2D�� , �22�

and

��
�q2D� = 4��L

�q2D��1 − ��L
�q2D�� , �23�

where

�L
�q2D� =

�

3kT
�

0

�

m2�x�p�x�dx , �24�

which reduces, for the monodisperse system, to the Langevin
susceptibility, �L=�m2 / �3kT�. Here, it is assumed that the
effective in-plane field strength is given by the Weiss mean-
field approximation, H�eff=H� + �4� /3�M�, but the out-of-
plane component H�eff is equal to H� due to the monolayer
properties.

From Eq. �16� the initial susceptibility for 2D fluids reads

��2D� = 2��L
�2D��1 + ��L

�2D�� , �25�

where

�L
�2D� =

�

2kT
�

0

�

m2�x�p�x�dx . �26�

From Eq. �17� the initial susceptibility for 3D fluids can
be written as

��3D� = 4��L
�3D��1 +

4�

3
�L

�3D��1 +
�m2�2

25�kT�2x̄6�� , �27�

where �L
�3D�=�L

�q2D�. Considering the free energy expression
�Eq. �17��, this equation is exact �in the framework of mean
field approximation� for the monodisperse system �first ob-
tained by Ivanov and Kuznetsova �22��, but it is only an
approximation for the polydisperse one due to the last term
containing the coefficient �m2�2 / x̄6. �Without this approxima-
tion it is not possible to calculate analytically the last term of
Eq. �17�, because the �2�ij�6= ��i+� j�6 coupling hinders the
factorization.� Eq. �27� can be considered as the improved
version of the previous susceptibility formulas �21,12� of real
polydisperse fluids.

C. Monte Carlo algorithm

Constant volume and temperature Monte Carlo calcula-
tions have been performed using translational-orientational
and resizing moves of the particles �semigrand ensemble
simulation�. In our recent work �17� a simple scheme was
constructed to produce appropriate distribution functions for
the trial moves responsible for generating the possible con-
figurations of particle sizes.

The original semigrand ensemble method �14� operates
with a fixed underlying �sampling� particle distribution den-
sity pu�x� for the resizing moves. In our case, however, pu�x�
is dynamically updated during the simulation in such a way
as to minimize the deviation of the instantaneous particle
distribution density pc�x� from the target distribution density
p�x�. Starting from pu�x�= p�x� �or pu�x� is taken from the
output of a previous run�, at regular simulation intervals, the
histogram approximation of pu�x� is adjusted for each entry
of the distribution, xi. Here, pc�x� is taken from a limited
number of configurations immediately preceding the adjust-
ment step. In our procedure, the adjustment ratio parameter
��� used to increase or decrease pu�xi�, if necessary, was kept
fixed �5%� for each entry except for the low-probability par-
ticle size regions, where it was set proportional to the relative
deviation of pc�xi� from p�xi�. In this work the adjustment
ratio parameter is set proportional to the relative deviation in
the whole range of particle sizes:

�i = �� pc�xi� − p�xi�
p�xi�

�100 �28�

for all xi, where � is the modification factor. Furthermore, the
idea proposed by Wilding �20� is followed in the sense that a
periodically decreasing modification factor is imposed. Ac-
cording to this procedure, a new simulation cycle starts when
the maximum relative deviation of �pc�xi�� from p�xi� falls
below a prescribed value �the brackets denote the ensemble
average taken in the entire simulation cycle�. In the begin-
ning of the new cycle, � is reduced by 50% and the accumu-
lators for the particle distribution, thermodynamic and struc-
tural properties, etc. are reset.

Tuning pu�x� in this manner violates detailed balance.
However, detailed balance is restored asymptotically as �
goes to zero, moreover, we can also take the final pu�x� as the
input of a normal semigrand ensemble simulation in order to
obtain the exact equilibrium results for the properties of in-
terest �30�.

D. Computational details

In all simulations N=500 particles were employed. The
last production cycle of the simulations varied between 300
106 and 500106 trial moves. The frequency of attempt-
ing resizing moves was equal to that of the translational and
orientational moves and, likewise, the acceptance criterion of
the resizing moves was the same as that used for the trans-
lational and orientational moves �16�.

The long-range dipolar interactions were treated using the
Ewald summation with conducting boundary condition
�31,32�: in this case the applied external field in 2D and 3D
is identical to the internal field acting on particles throughout
the simulation box. The formulas for the q2D and true 2D
systems are taken from the works of Weis �4� and Gao et al.
�7�.

The results for the dipolar �magnetic� fluids are presented
in reduced units, where the mean magnetic core diameter x̄ is
used for �: T*=kT /� is the reduced temperature, and �*

=N�3 /V or �*=N�2 /V is the reduced density in 3D or 2D,
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where the volume V means the area of the plane in 2D and
q2D. Furthermore, H*=H��3 /� is the dimensionless exter-
nal magnetic field, M*=M��3 /� is the dimensionless mag-
netization, and m*2=m2 / ���3� is the reduced squared mag-
netic moment in q2D and 3D �in true 2D �3 is replaced by
�2�. For the magnetic coupling, �=m*2 /T*=1 was adopted at
T*=1. This choice implies that the average reduced magnetic
moment was unity in all calculations.

The monodiperse fluid is characterized by uniform � and
m, with the additional specification that m*=1. Due to the
fact that m̄�x3 �or m̄�x2� and x3� x̄3 �or x2� x̄2� for the
polydisperse fluid, the monodisperse fluid can be considered
to have either a different mean core diameter or different
bulk magnetization �i.e., different ferromagnetic component�
than those of the polydisperse fluid. As the choice of � is
arbitrary to some degree, the equivalent monodisperse sys-
tem might be the one with the same volume fraction of the
magnetic cores as the polydisperse system �at the same num-
ber density�. This means that, instead of the mean core di-
ameter, the mean cubed core diameter would be identical for
the two systems.

For the parameters of the gamma distribution, x0 /x�

=0.3 and a=24 were taken, and the distribution was trun-
cated at 2.6 and 14 nm, where p�x� is already well below 4
10−4. This truncation leads to a decrease of the original
mean core diameter, x̄=x0�a+1�=7.5 nm, by only 0.04%.
The distributions p�x�, pu�x�, and pc�x� are stored in the form
of a histogram with a prescribed number of subintervals or
“bins.” The width of the particle size subintervals was set to
0.2 nm. Figure 1 illustrates the good agreement between the
target particle distribution and that obtained in the simula-
tions.

III. RESULTS AND DISCUSSION

Magnetization curves were determined in q2D systems
applying the external magnetic field parallel and perpendicu-
lar to the layer. We have compared the results for the poly-
disperse systems of different densities with those of the cor-

responding monodisperse systems. In the simulations the
equilibrium magnetization can be obtained from the expres-
sion

M* =
1

V*�	
i=1

N

mi
*� , �29�

where the brackets denote the ensemble average. In our case,
essentially zero net magnetizations were detected in the di-
rections perpendicular to the applied field direction. Figure
2�a� shows that the density dependence and the temperature
dependence of the results are consequential: the magnetiza-
tion data are smaller at lower densities and higher tempera-
tures. The smaller out-of-plane magnetizations reflect the
preferred in-plane orientations of the dipole vectors. As we
experienced, the linear relationship between M* and H* for
these curves will break down only at strong magnetic fields,
while the in-plane magnetization saturates more rapidly. This
figure also reveals that both the in-plane and the out-of-plane
magnetizations are greater in the polydisperse system than in
its monodisperse counterpart. Figure 2�b� illustrates the qual-
ity of the theoretical prediction. The agreement between
simulation and theory is better at weak external fields. At

FIG. 1. The applied particle distribution density for the polydis-
perse systems: The continuous line indicates the target distribution.
Data points show the average distribution obtained from a semi-
grand ensemble simulation in a q2D system at T*=1.0, �*=0.60,
and Hz

*=3.0 �the field direction is perpendicular to the plane�, and
the dashed line is the underlying �sampling� distribution used here
in the final simulation cycle.

FIG. 2. �Color online� �a� Simulated dimensionless magnetiza-
tion as a function of the external magnetic field in q2D systems
obtained at T*=1.0 �dark� and T*=1.1 �light-colored�, where � and
� stand for the direction of the external field �in-plane and out-of-
plane, respectively�. The triangles and the dotted lines correspond to
ferrofluids at �*=0.40, the circles and the dashed lines to ferrofluids
at �*=0.50, the squares and the solid lines to ferrofluids at �*

=0.60. Open and half-closed symbols denote the monodisperse and
the polydisperse systems, respectively. The statistical uncertainties
of the simulation results do not exceed the symbol size. �b� Com-
parison of the theoretical predictions �lines� with the simulation
results �symbols� at �*=0.40. The continuous lines represent the
magnetization of the ideal ferrocolloid gas �ML

* =m*�*L����.
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stronger fields, the applied theory only yields the expected
greater magnetization for the polydisperse system as com-
pared to the monodisperse one and correctly predicts the
temperature dependence of this property.

The initial gradient of the magnetization curve is the ini-
tial susceptibility �, which is determined from the linear
magnetic response M= �� /4��H at field strength H→0. To
evaluate these data from simulation we need to ascertain the
linear region of each simulated magnetization curve. Figure
3 shows the best linear fits to the initial regions of the in-
plane and out-of-plane curves. Since there is no spontaneous
magnetization in our case, the starting point of these fits was
the origin, although we have taken into account the statistical
errors of the simulation results for the other points. In gen-
eral, � can also be obtained from zero field simulations
through fluctuation formulas. In 3D this reads

��3D� =
4�V*

3T* ��M*2� − �M*�2� . �30�

Similarly, the in-plane susceptibility in q2D can be calcu-
lated from

��
�q2D� =

4�V*

2T* ��M�
*2� − �M�

*�2� , �31�

where the isotropy in 2D plane is considered through divi-
sion by 2. Retaining the formal definition for �, the out-of-
plane susceptibility should be proportional to the fluctuation
of the z component of M �the axial direction z is perpendicu-
lar to the layer, M�

* =Mz
*�:

��
�q2D� =

4�V*

T* ��Mz
*2� − �Mz

*�2� . �32�

We have found excellent agreement between the results for
the susceptibility calculated from the explicit magnetic re-
sponse of the system to the external field and from the zero
field fluctuation formulas. These cross-checked simulation
results are compiled in Table I. Here it is also seen that the
efficiency of this simple first order perturbation theory in
q2D is quite good for the in-plane susceptibility though the
theory slightly overestimates the simulation results. How-
ever, this theory with the used order of truncation cannot
adequately predict the density and temperature dependences
of the out-of-plane susceptibilities.

In order to compare the above results with true 2D and 3D
susceptibilities, we have defined a hypothetical “isotropic”
susceptibility utilizing the system symmetry in q2D:

��q2D� = �2��
�q2D� + ��

�q2D��/3. �33�

The true 2D and 3D susceptibilities were calculated from
zero field simulations. The fluctuation formula in true 2D can
be written as

��2D� =
2�V*

2T* ��M*2� − �M*�2� . �34�

Figure 4 shows the comparison between the results obtained
from simulation and theory in systems of different dimen-
sions. Since ordering in any system basically arises due to a
competition between the particle interaction energy and the
thermal energy, the susceptibility data are plotted here in

FIG. 3. �Color online� Dimensionless in-plane �a� and out-of-
plane �b� magnetizations as a function of the external magnetic field
in q2D systems obtained at T*=1.0 �dark� and T*=1.1 �light-
colored�. The meaning of the lines and symbols is the same as in
Fig. 2. The straight lines are the linear fitting results, the slope of
which gives the initial susceptibility.

TABLE I. Magnetic susceptibility ��� for the monodisperse and polydisperse ferrofluids in q2D systems obtained from simulation and
theory.

T* �*

Monodisperse Polydisperse

��
sim. ��

theory ��
sim. ��

theory ��
sim. ��

theory ��
sim. ��

theory

1.0 0.4 2.7 3.0 0.80 0.97 4.2 4.8 1.03 0.97

1.0 0.5 3.8 4.1 0.90 1.00 6.2 6.7 1.13 0.80

1.0 0.6 5.4 5.4 0.97 0.93 8.4 9.0 1.16 0.46

1.1 0.4 2.3 2.6 0.78 0.94 3.6 4.1 1.01 1.00

1.1 0.5 3.3 3.6 0.88 1.00 5.2 5.8 1.08 0.90

1.1 0.6 4.5 4.7 0.93 0.98 7.2 7.7 1.12 0.66
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terms of the dimensionless parameter y=�*� /�. This param-
eter is a measure for the approximate zero field magnetic
interaction energy of the system, N2 /2m*2 /V*, relative to the
thermal energy, �N /2��T*, where � is the translational and
rotational degrees of freedom of the particles ��=4, 5, and 6
in 2D, q2D, and 3D, respectively�. Note that the magnetic
moments of the particles in true 2D were taken proportional
to the area of the 2D disks. The obtained susceptibility
curves shift consistently downward as the system dimension-
ality and thus the degrees of freedom of particle motions
decreases. Also, the consistent influence of polydispersity is
clearly seen. The applied theory predicts the susceptibilities
in all dimensions with good to excellent accuracy, which
verifies the efficiency of this simple theory also for q2D sys-
tems.

The pair correlation functions, g�r�, determined from
simulations in systems of different dimensions for the same y
are presented in Fig. 5. As expected, notable broadening and
shifting of peaks can be observed for the polydisperse sys-
tems as compared to the monodisperse ones. However, for
both the monodisperse and the polydisperse cases, the devia-
tions between the curves reflect only the density differences
between the 2D, q2D, and 3D systems considered here �we
get practically indistinguishable pair correlation functions for

2D and q2D systems at the same density�. The correlation
functions h��r� and hd�r� provide a deeper insight into the
structure. These functions are the projections of g�r� onto the
functions

��i, j� =
mi

mi
·

m j

mj
�35�

and

d�i, j� = 3�mi ·
rij

rij
��m j ·

rij

rij
� − mi · m j �36�

�in true 2D factor 3 is replaced by 2�. h��r� and hd�r� are
measures of the relative orientation of a pair of dipoles and
their dipolar interaction energy at a given separation, respec-
tively. Figure 6 indicates that the first peak in h��r� and hd�r�
in the polydisperse systems tends to be rounded rather than
sharp as in the monodisperse systems. The more pronounced
shift of this peak in hd�r� obviously comes from the signifi-
cant contribution of the pairs of larger dipoles to the average
attractive interaction at short separation distances �note that
d�i , j� is defined here by taking into account the lengths of
the dipole vectors�. The fact that the first minimum in h��r�
is the deepest for the true 2D system demonstrates that the
second neighbors have particularly limited opportunities to
find favorable orientations in 2D. Of the three systems, the
q2D system exhibits the weakest orientational ordering but
the strongest attraction of dipoles in the first shell. This sug-
gests that, in the absence of the external field, the dipole
moments in q2D point preferably in the plane, since there is
a higher probability for a given number of particle pairs with
nearly parallel dipole moments in a 2D shell, in contrast to a
3D shell, to be found in nearly colinear arrangement with the
interparticle separator vector. Furthermore, although the

FIG. 4. Initial susceptibilities for 2D �triangles and dotted lines�,
q2D �circles and solid lines�, and 3D �squares and dashed lines�
systems as a function of the dimensionless parameter y. Symbols
represent the simulation results and lines are the theoretical predic-
tions. Open and half-closed symbols denote the monodisperse and
the polydisperse systems, respectively. Note that these results are
obtained from calculations at two different temperatures.

FIG. 5. �Color online� Pair correlation functions for 2D systems
at �*=0.40 �dotted lines�, q2D systems at �*=0.50 �solid lines�, and
3D systems at �*=0.60 �dashed lines� in the absence of the external
field at T*=1.0. Light-colored and dark curves denote the monodis-
perse and the polydisperse systems, respectively.

FIG. 6. �Color online� Projections of the pair correlation func-
tions. The meaning of the lines is the same as in Fig. 5.
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alignment of dipoles in the plane is better in 2D than in q2D,
the short-range attraction of 3D dipolar bodies is stronger
than that of 2D dipolar disks.

Figure 7 shows the effect of the external field on the shape
of these correlation functions in q2D. The results for h��r�
are consistent with the magnetization curves in that the ori-
entational ordering is significantly weaker when applying the
external field perpendicular to the layer. The systematic de-
crease in angular correlation due to polydispersity suggests a
substantially lower ability of the smaller particles to coalign
with the field direction. Consequently, when considering the
observed greater magnetization of the polydisperse system,
h��r� indirectly uncovers the decisive role of the larger par-
ticles in the magnetic properties of the polydisperse system.

The negative values in hd�r� make evident the net repulsion
between the dipoles induced by the external field pointing
along the z axis. For the case of perpendicular fields, we have
found the total potential energy consistently lower �and nega-
tive� in the polydisperse systems than in the monodisperse
ones �the numerical results are not presented here�. In light
of this, the most striking observation here is that the polydis-
perse system exhibits greater net repulsion between the di-
poles. Since the average magnetic moment is the same for all
systems studied, this can only be attributed to the fact that
the large dipoles align predominantly in the field direction,
and the energy gain from the interactions of these particles
with the external field not only compensates the compara-
tively small contribution of the smaller particles to the exter-
nal part of the potential energy but also the greater net repul-
sion between the particles.

IV. CONCLUSIONS

We considered the effect of polydispersity on the mag-
netic properties of model ferrofluid monolayers with a me-
dium degree of fixed polydispersity. On the basis of the first
order high field approximation perturbation theory, the mag-
netization curves in q2D and the Langevin susceptibility de-
pendence of the initial magnetic susceptibility in 2D, 3D, and
q2D are predicted. The obtained equilibrium magnetization
curves and dipolar correlation functions reflect the dissimi-
larity in composition and thus in structure between the poly-
disperse systems and their monodisperse counterparts. The
calculations provide further evidence of the preferred in-
plane orientation of the magnetic dipoles and of the crucial
role of the large dipoles in the magnetic properties of the
polydisperse q2D systems. In comparison with the true 2D
and 3D systems, the initial magnetic susceptibility was found
to be remarkably sensitive to the degrees of freedom of par-
ticle motions.
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